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Abstract

Two methods are used in this work to estimate the porous shape memory alloy (SMA) thermomechanical behavior.
The porous SMA is assumed to be made of two components, the dense SMA matrix and the pores. An existing rate-
independent type constitutive model is employed to describe the matrix behavior. Two contrasting strategies are used to
estimate the overall thermomechanical behavior: (1) the unit cell finite element method (UCFEM) to account for pe-
riodic distribution of pores in the SMA matrix, and (2) an averaging micromechanics method based on the incremental
formulation of the Mori-Tanaka method to account for random distribution of pores in the matrix. Cylindrical and
spherical shapes are considered as approximations of open and closed pores, respectively, in both methods. Results are
presented for both types of pores and comparisons are made between the two methods under various loading condi-
tions. Both methods compare well in predicting the isothermal elastic material properties and pseudoelastic response
under axial and out-of-plane shear loading. However, the transformation results differ under transverse and in-plane
shear loading. This difference is found to be due to the use of an average value of stress for the SMA matrix in the
micromechanics averaging method, which diminishes the effect of local stress concentration thereby delaying the onset
of phase transformation caused by an applied load. On the other hand, the actual values of stress at all material
points in the SMA matrix are used in the UCFEM causing phase transformation in regions near the pores at smaller
applied load values than what is calculated by the micromechanics averaging method. © 2001 Published by Elsevier
Science Ltd.
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1. Introduction

Dense shape memory alloys (SMAs) have been used as active materials in smart structures for more than
a decade now, and they have captured the imagination of the engineering community since the early sixties
(Buehler et al., 1963; Buehler and Wiley, 1965; Wayman, 1983). During the last 15 years a number of
research papers on constitutive modeling of dense SMAs has appeared in the literature. Some represen-
tative works have been published by Tanaka (1986), Liang and Rogers (1990, 1992), Brinson and Lam-
mering (1993), Graesser and Cozzarelli (1994), Boyd and Lagoudas (1996), Lagoudas et al. (1996), Levitas
(1998), Govindjee and Hall (1999) and Qidwai and Lagoudas (2000b). Additional papers can be found in
the review paper by Birman (1997).

Initiating from early studies in Russia (Shabalovskaya et al., 1994; Itin et al., 1994; Shevchenko et al.,
1997) and further development in China (Li et al., 1998a,b, 1999), porous SMAs have been developed and
used primary for bone reconstruction applications (Simske et al., 1996; Ayers et al., 1999). They have lower
density compared to fully dense SMAs, which allows their use in a number of lightweight applications.
Another advantage of porous SMAs is the possibility of creating a functionally gradient material by
spatially varying the porosity. The expectation is that the porous SMAs will retain some of the desirable
characteristics of fully dense SMAs, e.g., shape memory effect and pseudoelasticity while enhancing shape
recovery and energy absorption capabilities.

In order to capitalize on the potential and unique capabilities offered by porous SMAs, it is necessary to
establish efficient and accurate theoretical models and to develop experimental procedures for fabrication
and testing of porous SMA specimens under quasi-static and dynamic loading. While both theoretical and
experimental work are equally important, the current study focuses on the micromechanical modeling of
porous SMAs under quasi-static loading, while detailed description of the material fabrication process can
be found in other references (in addition to the above references, see, for example, Lagoudas et al., 2000b;
Vandygriff et al., 2000; Thangaraj et al., 2000).

In order to effectively use the porous materials in various engineering areas, it is pertinent to know their
mechanical and physical properties as a function of the pore volume fraction as well as the pore geometry
and, possibly, pore distribution. Moreover, having effective methods for analyzing porous materials assists
in designing new materials with specific properties. There is a great number of research papers available in
the literature devoted to modeling of porous materials. Different aspects of modeling of porous and cellular
solids are presented by Green (1972), Gurson (1977), Jeong and Pan (1995), Gibson and Ashby (1997),
among others.

As seen from the literature review, the modeling of porous materials has been performed assuming either
periodic or random distribution of pores. Even though the existence of periodic arrangement of pores in a real
porous SMA material is an approximation, this assumption provides insight into global material behavior in
the form of useful limiting values for the overall properties. Additionally, an approximate local variation of
various field variables like stress and strain indicating areas of concentration due to porosity can be obtained.
These results may provide design limitations in order to minimize or even avoid microbuckling, plastic
yielding and consequently loss of phase transformation capacity over number of loading cycles. The as-
sumption of periodicity and symmetry boundary conditions reduce the analysis of the porous SMA material
to the analysis of a unit cell (Achenbach and Zhu, 1990; Nemat-Nasser and Hori, 1993; Lagoudas et al., 1996).
Thus, appropriate loading conditions need to be applied, which do not violate the symmetry of the problem.

Micromechanical averaging techniques can also be used to determine the averaged macroscopic response
of the porous material with random distribution of pores. In this case the material is treated as a composite
with two phases: dense matrix and pores. Among the micromechanics averaging methods, the two most
widely used are the self-consistent method and the Mori-Tanaka method (MTM). Both approaches are
based on the presumption that the effective response of the composite can be obtained by considering a
single inhomogeneity embedded in an infinite matrix.
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According to the self-consistent method (Hershey, 1954; Kroner, 1958; Budiansky, 1965; Hill, 1965) the
interactions between the inhomogeneities are taken into account by associating the properties of the matrix
with the effective properties of the composite, i.e., embedding the inhomogeneity in an effective medium.
Some self-consistent results for spherical pores in an incompressible material are presented by Budiansky
(1965). Contrary to this approach, the MTM initially suggested by Mori and Tanaka (1973) and further
developed by Weng (1984) and Benveniste (1987) takes into account the interactions between the inho-
mogeneities by appropriately modifying the average stress in the matrix from the applied stress, while the
properties of the matrix are associated with the real matrix phase.

Recently, both averaging approaches have been applied to obtain effective properties of composites with
inelastic phases. For example, a variant of the self-consistent method using incremental formulation
(Hutchinson, 1970) has been used to model composites undergoing elastoplastic deformations. Lagoudas
et al. (1991) have used an incremental formulation of the MTM to obtain the effective properties of a
composite with an elastoplastic matrix and elastic fibers. In a different work, Lagoudas et al. (1994) have
applied the incremental MTM to model the behavior of a composite with elastic matrix and SMA fibers.
Another group of researchers (Cherkaoui et al., 2000) has applied the self-consistent technique to obtain the
effective properties of a composite with elastoplastic matrix and SMA fibers.

Preliminary results of modeling of porous SMA based on both periodic pore distribution (using unit cell
FEM) and random pore distribution (using micromechanics averaging technique) have been presented by
the authors in conference proceedings (see Lagoudas et al., 2000a,b). Both modeling approaches are further
developed and completed in this work. The purpose of the current effort is to present a comprehensive
description of the two modeling methods. In addition, a thorough discussion and analysis of the obtained
results will be performed.

The paper is organized as follows: Section 2.1 contains the description of the evaluation of quasi-static
behavior of porous SMAs with the help of the unit cell finite element method (UCFEM) for periodically
arranged open and closed pores in dense SMA matrix. Similarly, Section 2.2 describes the micromechanics
averaging approach, based on the MTM for randomly arranged open and closed pores. Section 3 contains
the numerical results for various pore volume fractions of both types of pores as calculated by the two
methods. Both effective elastic material properties and transformation behavior are illustrated. Section 4 is
devoted on discussion of the results. Finally, conclusions are presented in Section 5. The constitutive model
for dense NiTi SMA is briefly described in the appendix.

2. Theoretical aspects of modeling

Porous SMA may contain all open pores, all closed pores or a combination of both types. In this study,
either open or closed pores are assumed to exist in a given specimen. A micromechanical approach is used
to determine the averaged macroscopic response regardless of pore type. The material is treated as a two-
phase composite made of the dense SMA matrix and pores. The porous material is characterized by the
pore volume fraction and the pore shape. The pore size is considered to be sufficiently larger than the lattice
parameters of the SMA. It has been observed experimentally that the pore size is of the same order of
magnitude as the grain size of Ni and Ti powders used for the fabrication of the porous SMA. Typical pore
sizes are 100-1000 um (Lagoudas et al., 2000b). The actual pore size does not enter neither in the UCFEM
nor in the micromechanical averaging method. It should be noted that this is true for quasi-static loading,
while the pore size will influence the dynamic response of the material.

The modeling of dense SMA matrix is carried out using an existing rate-independent constitutive model
(Lagoudas et al., 1996; Qidwai and Lagoudas, 2000a). The SMA constitutive model for isothermal con-
ditions is briefly summarized in the Appendix A, while its details may be found in the cited references.
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As a result of the modeling, the effective thermomechanical response of the porous SMA including
pseudoelasticity and shape memory effect will be obtained in the form of

3y = LinEju. (1)

In Eq. (1) above Zj and E,»j are the effective stress and strain increments, respectively and L;y; is the
effective tangent stiffness tensor. The components of L;;; will be obtained for different loading paths.

2.1. Unit cell finite element method

As a first step, an in-plane hexagonal arrangement of pores is assumed in the present study. The cross-
section of such an arrangement for open pores is shown in Fig. 1. The x—y plane forms the cross-section of
the material specimen and z is the out-of-plane axis running along the length of the specimen. As shown in
the figure, the open pores are assumed to be in the form of cylinders with circular cross-section and gene-
rators parallel to the out-of-plane z-axis. The resultant material possesses transverse isotropy similar to
that obtained for a random arrangement of similar cylinders. On the other hand, closed pores are assumed
to be spherical in shape. It is further assumed that layers of hexagonal arrangement of spheres lie equally
distant in the out-of-plane z-direction at distance /. The resultant material symmetry is decided by the ratio
of d with other characteristic lengths.

Assuming that the applied loads do not violate the geometric symmetry of the unit cell, one of the many
possible representative unit cells, which can be used to predict the overall effective behavior, is given in Fig.
2 for both open and closed pores, respectively. The cross-section of each unit cell is a rectangle with cross-
section w x 2k, where 7 = 0.866w, and length /. For both open and closed pore unit cells, / is assumed to be
equal to w. For these dimensions, the overall material behavior will be transversely isotropic for both open
and closed pores. The material symmetry of closed pore material is dependent on geometric characteristics.
For instance, if layers of closed pores (spheres) are assumed to be lying equidistant at / = 44 instead of
! = w then the overall material behavior would be isotropic.

The 3-fold geometric (reflection) symmetry of the porous material, which needs to be applied on both
open and closed pore unit cells, can be explained based on the open pore unit cell schematic given by the

Yy
T Dense SMA

0000

Lines of z: out-of-plane axis
Symmetry /= w (thickness, not shown)
h= 0.866 w

Pore

Fig. 1. Cross-sectional schematic of periodic hexagonal arrangement of open pores (cylinders) in a dense SMA matrix. The blown-out
image is the cross-section view of the unit cell used in the analysis.
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Fig. 2. 3-D open and closed pore unit cells used in the study. These unit cells completely define the behavior of their bulk counterparts.

dashed lines (a-b-c—d-a) in Fig. 1. Note that the unit cell has a uniform depth in the z-direction. The
following displacement boundary conditions need to be applied regardless of pore geometry:

u(0,v,z) = v(x,0,z) = w(x,»,0) =0, (2)

“(WJ/,Z) = C1, U(x7 2h,Z) = (2, W(%)’v l) = (3, (3)

where (u, v, w) are displacements in the (x, y, z) directions, respectively, and c;, ¢, and ¢; are constants,
which impose the boundary conditions that all material points on respective unit cell boundaries have the
same normal displacement. Similarly, the reflective symmetries imply that shear stress components vanish
on all boundaries of the unit cell:

ny(omyaz) = ny(wa)’vz) = ny(xvovz) = ny(x7 2haz) =0, (4)
O_xz(xaya 0) = O_xz(xaya l) = sz(O,y’Z) = sz(Wyy,Z) = 07 (5)
0,:(x,»,0) = 0,.(x,y,1) = 0,x(x,0,2) = 0,.(x,2h,2z) = 0. (6)

The stress and strain fields in the unit cell can be extended for the whole porous SMA material by virtue of
the periodicity and symmetry conditions. The effective applied stress is obtained as the ratio of the total
applied force to the area of the boundary of the unit cell. The effective strain is calculated as ratio of the
displacement on the boundary of the unit cell to the initial length of the unit cell in the loading direction for
different loading paths.

As mentioned in the beginning of Section 2, the modeling of the response of porous SMAs is inde-
pendent on the pore size. Indeed, additional finite element computations were performed for self-similar
pore shapes of different sizes, which reconfirmed the independence on pore size. The independence of the
results on pore size can also be shown by normalizing the governing equations by the characteristic length
of the unit cell (in this case, by the value of w).

2.2. Micromechanics averaging method

In this case the overall stress 2;; and strain E;;, which are uniform over the representative volume element
(RVE) are computed by volume averaging the corresponding local quantities (stress o7; and strain &)).
Thus, for a loading path given by E;;(¢) the corresponding overall stress X;; will be evaluated using a mi-

cromechanics averaging method. In this work, isothermal conditions are assumed and the description is
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restricted to a two-phase composite, i.e., the SMA matrix and pores of identical shape. Thus the porous
SMA is completely characterized by the volume fraction of the pores ¢, and the pore shape. Following the
standard micromechanics approach (Hill, 1965), the following relation exists between the globally applied
increment of strain £;; and the local increment of strain in the matrix & (x,):

&) = Al (%) Enr, (7)

where Al (x,) is the matrix strain concentration factor and x, are the components of the position vector.
Taking the volume average of Eq. (7) results in

SZ = <é”l( a) = :jkl( n)>Ekl~ (8)
The average matrix strain concentration factor 47, = <A:;',1-k1 (x,)) is calculated from the following relation:
Codiy + (1= cp) Ay = dijur, 9)

where Af/k, is the average strain concentration for the inhomogeneities (pores) and J,, is the fourth-order
symmetric identity tensor, given by

O = l(55/c5j1 + ). (10)

The pore strain concentration factor Aukz is evaluated using the Mori-Tanaka approximation (Weng,
1984; Benveniste, 1987; Lagoudas et al., 1991):

Agkl = [Oyu — (1 — Cp)Sgkzrla (11)

where SE kil is the Eshelby tensor, defined for the shape of the pores and the dense SMA tangent stiffness
tensor, Ll';’k, Therefore, the MTM, which has been developed for elastic heterogeneous media is imple-
mented here in an incremental way.

After the local strain increment is evaluated from Eq. (8), the increment in local stress and volume
fraction of martensite (£) are calculated by integrating the constitutive SMA response (Appendix A) using a
return mapping algorithm (Qidwai and Lagoudas, 2000a). The numerical algorithm that incorporates the
MTM and the return mapping algorithm is shown in Table 1.

Once the stress tensor, the transformation strain tensor, the martensitic volume fraction, the tangent
stiffness and the average strain concentration factor in the SMA matrix are updated, the macroscopic
(effective) tangent stiffness tensor L;;; as defined by Eq. (1) is obtained. Employing the relation

m __ ym :m m m I
61 = Liutr = LA Emn (12)
Table 1
Implementation of the incremental MTM and return mapping algorithm for porous SMAs
1. Calculate Eshelby tensor Sﬁkl using the elastic stiffness matrix for SMA and pore geometry
2. Calculate A,/,d (k is the iteration counter) using: A”k[ = [0y — (1 — )SIE/,(,Tl A‘;H (1 —cp)4 Z"(,) = iju
3. Using the given increment of the macroscopic strain tensor £; ; obtain the increment of the microscopic strain tensor in the

matrix & = A;’;,EII‘)EM

Perform return mapping algorithm to obtain (77/’-< ), f'/"

Update Lf'j',gf

Calculate Sf;, using szk/

Calculate 47" using the new value of S&,

If HA:’;A];+l Z’k, || < TOL then go to step (9); else go to step (3)
m(k

Assign L:’;kl = Lyk/)’ A;’;kl = AUA/

10.  Exit

and &%

AR S A
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and using the definition of the macroscopic stress increment

: 1 . 1 o o

Zij:;/l/aijdV:;/Vm o dV = (1 —¢p)ay, (13)
the macroscopic (effective) tangent stiffness is given by the following equation:

Lijkl = (1 - CP)L:"/I'mnAznkl (14)

in terms of the dense SMA tangent stiffness tensor and the average strain concentration factor of the SMA.

3. Numerical results

The numerical return-mapping algorithm developed by Qidwai and Lagoudas (2000a) is used to describe
the dense SMA matrix constitutive behavior in the UCFEM. The algorithm is implemented in a user
supplied material subroutine (UMAT) which is compiled with the commercial FEM package ABAQUS
(1997). To obtain the effective response of the material, finite element analysis is performed on the unit cells
(shown in Fig. 2) under various loading conditions. An example of the finite element meshes that are used in
the study is given in Fig. 3 for pore volume fraction of 0.4 for periodic open and closed pore SMA.

Similarly, the algorithm based on the incremental MTM (see Table 1) is also developed in a modified
UMAT. The Eshelby tensor, required to compute the concentration factors, is not available in closed form
for the case of general loading because phase transformation introduces anisotropy of the tangent stiffness
tensors. Therefore, a numerical evaluation of the Eshelby tensor is employed in this work. The algorithm for
the numerical evaluation used here is the one developed by Gavazzi and Lagoudas (1990). The shape of the
inclusions (pores) is specified by the three principal axes of the ellipsoid, a1, a, and a;. For the case of closed
pores (spherical inclusions), the principal axes were set equal: a; = a, = a;. For the case of open pores
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Fig. 3. Finite element meshes employed in the analyzes of periodic open and closed pore SMA, respectively, containing pore volume
fraction of 0.4.
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Fig. 4. Schematic of the boundary value problems used in the finite element implementation of the micromechanics averaging method:
(a) tensile loading and (b) shear loading.

(cylindrical inclusions), two axes were set equal (a; = a,) while the ratio a;/a; was set equal to a very large
number.

The effective constitutive response of porous SMA is obtained for axial, transverse, in-plane shear and
out-of-plane shear loading cases for both the UCFEM and the micromechanics averaging method (see Fig.
4). The four loading paths are subdivided into two subgroups: tensile loading and shear loading. The tensile
case (see Fig. 4a) is implemented for both axial and transverse loading paths, depending on the pore ori-
entation in the material. Similarly, the shear case (see Fig. 4b) contains both in-plane and out-of-plane
loading paths, depending on the pore orientation. Since in the case of open pores the material has only five
independent constants, only three of the loading paths are independent. However, the fourth-loading case is
also presented for completeness.

Each loading case is analyzed at pore volume fraction ¢, ranging from 0.2 to 0.6 for open pores and 0.1
to 0.5 for closed pores, respectively. Ranges of ¢, are chosen based on the available experimentally observed
values. The difference in the ranges of ¢, for open and closed porosity is due to the pore size limitation in
respective unit cells. For the case of closed pores, the minimum value of ¢, = 0.1 is chosen so that the same
number of data points are obtained for open and closed pore analyzes. The variations of effective elastic
material properties with respect to ¢, are obtained for both porous martensite and porous austenite.
However, the results are only shown for porous austenite because the variations are similar for porous
martensite. The effective pseudoelastic behavior is obtained by assuming the material to be initially stress-
free and at the austenitic finish temperature (4°7 = 42°C). Similarly, the shape memory effect behavior can
be obtained by setting the temperature to be lower than 4°° = 22°C. The material parameters chosen for the
study are given in Table 2. The results obtained using the unit cell FEM and the micromechanics averaging
method are presented in this section, while the comparison of the results and discussions are presented in
Section 4.

3.1. Elastic behavior

Fig. 5 shows the variations of effective axial elastic modulus, E,, effective transverse elastic modulus, Er,
effective plane strain bulk modulus, Kpg, effective out-of-plane shear modulus, G5 and effective in-plane
shear modulus, Gr with respect to c¢,. The variations in Fig. 5 represent differences in calculated material
properties for periodic open and closed pore austenite using the UCFEM. As mentioned earlier, the
variations for porous martensite are not shown here because they are similar to those of porous austenite.
Only these five properties are calculated because as described in Section 2.1, hexagonal arrangement of both
types of pores result in transverse material isotropy. The variations can be compared for open and closed
porosity in the range of 0.2-0.4 c,. As expected all material properties decrease with increasing c,. It is
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Table 2
Material parameters for dense NiTi SMA constitutive model*
Material parameters Values
EA (GPa) 70.0
EM (GPa) 30.0
v 0.33
H 0.05
o (K1) 22.0% 107¢
oM (K™ 10.0 x 10=¢
pAc (J/(m*K)) 0.0
— %0 (MPa/K) 7.0
M (°C) 18.0
M°" (°C) -2.0
A% (°C) 22.0
A°\f (°C) 42.0
2> (MPa) 140.0
)7'“
£~ (MPa) 140.0

#See Lagoudas et al. (1996) and Qidwai and Lagoudas (2000a).

P ME, ®E AK, 25 NG, *G;
>~ open pore open pore
§ ~ 1 - -~ ~
\:.g ----closedpore 5 2{ N ~ = - = closed pore
5w k-
° LR
2 &
= ]
L2 =
2 g 10
8 2 =
w 17}
£ 5
w
04 0
01 02 03 04 05 06 01 02 03 04 05 06

Pore Volume Fraction Pore Volume Fraction

Fig. 5. Variation of effective axial elastic modulus, E4, effective transverse elastic modulus, Er, effective plane strain bulk modulus, Kps,
effective out-of-plane shear modulus, G and effective in-plane shear modulus, Gt with respect to pore volume fraction, as determined
for open and closed pore periodic austenite using the UCFEM.

observed that E4 and Ga decrease linearly with ¢, and the variation of G, is similar for both open and
closed pore material. The variations of £, and Er are similar for closed pore in the range of ¢, considered.
The differences in the variations of material properties such as E4 and Et for closed pores is smaller than
those for open pores. To explain this, note that in open pore unit cell lesser volume of material is projected
in the transverse x-direction than in the axial z-direction (see Fig. 2). Also note that the amounts of material
volume projected in the x- and z-directions for closed pore unit cell are closer in value than those between
the open pore unit cell directions. That is, the closed pore material is more similar in the two directions
(closer to isotropy) than the open pore material (closer to transverse isotropy), and this lesser differences in
variations of material properties.

3.2. Transformation behavior

In this subsection, the results of porosity type and ¢, on the effective phase transformation behavior of
porous SMA are presented. In the UCFEM, except for the open pore axial loading case, the unit cell is
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Fig. 6. Effective pseudoelastic stress—strain response of open and closed pore SMA for pore volume fractions ranging from 0.1 to 0.6
under axial loading calculated by using the UCFEM.

loaded from the stress-free state until an effective global strain of approximately 4% is obtained, and then
unloaded fully. Stress concentration effects limit complete phase transformation throughout the matrix
because of the resulting excessive stress levels locally in the material at some points, as will be discussed later
in the text. The value of 4% is chosen to be consistent in comparison of results and also because it is
sufficiently high to insure at least partial phase transformation within the unit cell. In the micromechanics
averaging method, however, the material is loaded until complete phase transformation is obtained.

The effective axial pseudoelastic stress—strain response for the case of open and closed pores calculated
by using the UCFEM is shown in Fig. 6. For this particular loading, the only non-zero effective stress
component is the axial component, X... The response is obtained for various ¢, within the range of 0.1-0.6.
Note in Fig. 6 that regardless of pore type the material initially behaves elastically and exhibits a distinct
onset of the phase transformation in the matrix. By the end of the loading, complete phase transformation
has taken place, and the dense SMA matrix is in the martensitic phase. Upon unloading, a distinct start of
reverse phase transformation is observed. Full unloading results in the material returning to the austenitic
phase and all the strain is recovered. With increasing pore volume fraction, the values of the applied stress
required to initiate phase transformation in both forward and reverse phase transformation decreases.
Also, reduction of the elastic stiffness of the material with increasing pore volume fraction is observed. The
comparison of stress values and the elastic stiffness as described by the UCFEM and the micromechanics
averaging method will be discussed in detail in Section 4.

The effective response under transverse loading for the case of open and closed porosity for various ¢,
calculated by the UCFEM is shown in Fig. 7. Note that only in the periodic open pore case is the initiation
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1 1 !

0 0.01 002 003 004 0.05
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Fig. 7. Effective pseudoelastic stress—strain response of open and closed pore SMA for various pore volume fractions ranging from 0.1
to 0.6 under transverse loading calculated by using the UCFEM.
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of phase transformation not distinctly obvious on the effective stress—strain curves. Additionally, the
transition from elastic regime to phase transformation is sharper in the periodic closed pore case. All cases
display decrease of the value of the applied stress necessary for the onset of transformation and reduction of
the elastic stiffness of the material with increase in c,.

In a similar fashion, effective response under in-plane and out-of-plane shear loading calculated by the
UCFEM for various ¢, exhibit similar trends of decreasing the value of the applied stress necessary for the
onset of transformation and reduction of the elastic stiffness with increasing ¢, as shown in Figs. 8 and 9,
respectively.

The effective axial pseudoelastic stress—strain response for the case of open and closed pores calculated
by the micromechanics averaging method is shown in Fig. 10. The other loading cases show similar trends
as in the case of the UCFEM and are not presented here.

4. Discussion

This section is devoted to the comparison of the results obtained by the UCFEM and the MTM. First,
the comparison of effective elastic material properties obtained by using the UCFEM and the micro-
mechanics averaging method are shown in Fig. 11, where variations of effective axial elastic modulus, Ey,
and effective transverse elastic modulus, Et, of porous austenite are plotted with respect to ¢, for open and
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Fig. 8. Effective pseudoelastic stress—strain response of open and closed pore SMA for various pore volume fractions ranging from 0.1
to 0.6 under in-plane shear loading calculated by using the UCFEM.
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Fig. 9. Effective pseudoelastic stress—strain response of open and closed pore SMA for various pore volume fractions ranging from 0.1
to 0.6 under out-of-plane shear loading calculated by using the UCFEM.
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Fig. 10. Effective pseudoelastic stress—strain response of open and closed pore SMA for various pore volume fractions ranging from 0.1
to 0.6 under axial loading calculated by using the micromechanics averaging method (MTM).
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Fig. 11. Variation of effective axial modulus, E4 and effective transverse modulus, Et, with respect to pore volume fraction as de-
termined for (a) open and (b) closed pore austenite using the UCFEM and the micromechanics averaging method. The same variation
is obtained for porous martensite.

closed pores. It is important to note that implementation of the micromechanics averaging method
implicitly assumes a random distribution of open (cylindrical) pores in the x—y plane and a random
distribution of closed (spherical) pores throughout the volume, respectively. These assumptions result in
transverse isotropic symmetry for open pore SMA and isotropic material symmetry for closed pore SMA.
This means that £ = Et for closed pore micromechanics averaging method. Keeping this in mind, note
that a good correlation is observed for normalized Er for both open and pore cases through the two
methods. Similarly, both methods calculate similar variation for E4 in the open pore case. However, there is
a small difference in the variation of E4 for the closed pore case, which is attributed to difference in material
symmetries. The same results are obtained for porous martensite but are not shown here.

The effective transformation behavior under axial loading is compared next for ¢, of 0.2 and 0.5 for both
open and closed pore (see Fig. 12). This provides a comparison for relatively low and high ¢,. The open
pore UCFEM, open pore MTM and closed pore MTM coincide for both volume fractions although the
elastic unloading slope is slightly different in closed pore responses for both methods. This can be clearly
seen in Fig. 11 where axial modulus is plotted with respect to the c,. The main difference in results between
the two methods is that closed pore UCFEM calculations show values of the applied stress for onset of the
phase transformation significantly lower than in the other cases. This effect can be seen for all loading cases
in Fig. 13 and both methods for open and closed pore SMA.
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Fig. 12. Comparison of effective pseudoelastic stress—strain response of open and closed pore SMA for pore volume fraction of 0.2 and
0.5 under axial loading calculated by using the UCFEM and the micromechanics averaging method.
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Fig. 13. Comparison of applied stress necessary to induce forward (A — M) phase transformation with respect to pore volume fraction
for open and closed pore SMA calculated by using the UCFEM and the micromechanics averaging method under axial, transverse, in-
plane shear and out-of-plane shear loading.

Understanding the source and nature of stress concentrations in the different types of porosity and
methods of modeling them is crucial in understanding the calculated responses. In open (cylindrical) pore
periodic distribution and the pore geometry does not lead to stress concentration. When the applied load is
perpendicular to open cell porosity there is a stress concentration effect. On the other hand, in the case of
closed (spherical) pores there is a geometric concentration factor regardless of the loading direction re-
sulting in limited local transformation at a lower applied load. This effect is magnified near the pore and is
dependent on the direction of applied load. The von Mises effective stress can be three to four times as high
as the applied stress during phase transformation for closed (spherical) pores, and four to five times for
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Fig. 14. von Mises effective stress contour plot of open and closed pore SMA for pore volume fraction of 0.4 at the end of transverse
loading calculated by using the UCFEM.

open (cylindrical) pores when the loading is perpendicular to the axes of the cylinders. In both cases, the
result is an inhomogeneous stress field in the matrix material (dense SMA) increasing non-proportionally
during loading, which in turn induces inhomogeneous phase transformation throughout the matrix. In fact,
as shown for ¢, of 0.4 in Fig. 14 for both open and closed pores UCFEM at the end of transverse loading,
many regions of the matrix remain elastic even when von Mises stress reaches values in GPa at certain
material points locally.

The degree and scope of local inhomogeneity of transformation decide the value of applied stress
necessary for the onset of transformation and level of distinction of phase transformation from elastic
regime in the effective unit cell response. That is the reason that the value of applied stress necessary to
induce phase transformation for closed pore UCFEM is consistently lower than that calculated from open
pore UCFEM analyses. This is also the very reason that a lower maximum value of applied stress is im-
posed in the UCFEM to avoid large local stresses as evident from Fig. 14. Similarly, there is no distinct
initiation of phase transformation on the effective stress—strain curve as seen in the case of transverse, in-
plane shear and out-of-plane shear open and closed pore UCFEM responses in Figs. 7-9, respectively.
Finally, it can be said that depending upon the ¢, shape of pore and direction of loading, transformation
may take place locally at a much lower value of applied stress than the local stress in periodic unit cells.

The comparison between the transverse loading results highlights variations in calculated results due to
basic assumptions associated with the UCFEM and the micromechanics averaging method. Fig. 15 con-
tains the comparison for ¢, of 0.2 and 0.5 for both open and closed pores. The periodic open pore applied
stress necessary to induce phase transformation is less than the periodic closed pore applied stress as shown
in Fig. 13. Whereas, the stress values for micromechanics averaging method are similar and larger than
those of UCFEM. The micromechanics averaging method results also indicate that complete phase
transformation has been achieved for both pore cases. Not shown here is the fact that the value of applied
stress required in the UCFEM to achieve same levels of effective strain will cause local values of stress that
are much greater than allowable stress due to concentrations as previously discussed. However, the mi-
cromechanics averaging method uses only the average value of stress, which is much lower than the actual
stress due to concentration effects. Thus, the onset of the phase transformation occurs much later for the
micromechanics averaging method than for the UCFEM. Another observation is that while the trans-
formation does not take place throughout the matrix in the case of UCFEM, this is not the case if the
micromechanics averaging method is used since all material points in the RVE are assumed to behave in the
same fashion. Therefore, transformation occurs uniformly throughout the matrix, and complete trans-
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Fig. 15. Comparison of effective pseudoelastic stress—strain response of open and closed pore SMA for pore volume fraction of 0.2 and
0.5 under transverse loading calculated by using the UCFEM and the micromechanics averaging method.
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Fig. 16. Comparison of effective pseudoelastic stress—strain response of open and closed pore SMA for pore volume fraction of 0.2 and
0.5 under in-plane shear loading calculated by using the UCFEM and the micromechanics averaging method.

formation is obtained at a reasonable value of applied stress in the micromechanics averaging method. (The
same value of applied stress would theoretically produce large plastic deformations at material points near
the pore boundary in the periodic unit cell.)

Modeling method results in greater differences in the effective in-plane shear behavior than in the critical
stress and transformation values only, as shown in Fig. 16. Note that at the higher ¢, of 0.5, the rate of
effective hardening is non-linear for UCFEM regardless of pore type. The results for the out-of-plane shear
loading have better correlation in terms of critical applied stress and rate of hardening (see Fig. 17). The
critical applied stresses for both in-plane shear and out-of-plane shear are shown in Fig. 13. The greatest
difference in calculated results of the two methods is observed in the in-plane and transverse directions. This
is a direct result of stress concentration, which is more severe in the two directions. It should also be noted
that the difference between the two methods is always less for the closed pore case compared to the open
pore case. This is due to the fact that even though stress concentration exists near the pore boundaries in
closed pore case, it is less severe for the spherical pores than for the cylindrical pores especially under
transverse or in-plane pure shear loading.

5. Conclusions

An in-depth thermomechanical analysis of porous SMA material has been carried out using mi-
cromechanical methods. Two methods, the UCFEM to analyze periodic distribution of pores and the
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Fig. 17. Comparison of effective pseudoelastic stress—strain response of open and closed pore SMA for pore volume fraction of 0.2 and
0.5 under out-of-plane shear loading calculated by using the UCFEM and the micromechanics averaging method.

Mori-Tanaka averaging method (MTM) to analyze the random distribution of pores are employed. Two
types of pores are assumed to exist in the dense SMA matrix: open (cylindrical) pores and closed (spherical)
pores. The effective elastic and pseudoelastic isothermal responses have been calculated for different loading
paths, including material hysteresis. Overall a good correlation between the two methods has been ob-
served. The results obtained through the UCFEM are influenced by local stress concentrations, dependent
on the pore volume fraction (cp), pore shape and the direction of loading.

The comparison of the calculated results with experimental data has been omitted in this work and will
be presented in future publication. One of the difficulties to overcome in the experiments is the fabrication
of porous material with known SMA matrix properties.

The level of applied stress to initiate phase transformation calculated by the UCFEM is shown to be
consistently lower than that calculated by the micromechanics averaging method for each loading case. This
is a result of basic modeling assumption of average stresses in the micromechanics averaging method at each
material point, which are significantly lower than the local stresses due to stress concentration in the UC-
FEM. Use of local values of stress at each material point also results in gradual transition between the elastic
and transformation regimes in the effective stress—strain responses calculated by the UCFEM unlike those,
which are calculated by the micromechanics averaging method and show distinct initiation of phase trans-
formation. Another effect of the stress concentration near the pore boundaries is the smaller percentage of
transformed matrix in the UCFEM compared to the micromechanics averaging method. In fact, large
matrix volume remains in the elastic regime. This means that the observed effective transformation strain in
the UCFEM is controlled by the local values of transformation strain in a small region around the pore.
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Appendix A. SMA constitutive model

The SMA constitutive model (Lagoudas et al., 1996; Qidwai and Lagoudas, 2000a) for isothermal
conditions is briefly summarized below. The strain is given by
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& = Syl + & (A.1)

ij i

where & and o7; are the strain and stress in the SMA matrix and ¢]}' is the transformation strain. S;z, is the
compliance tensor and is defined by the rule of mixtures as

Sijkt = S?‘kz + 5(‘934'/;1 - Sf?kl)- (A.2)

In the equation above ¢ is the volume fraction of the martensite phase and S/}, and S}, are the compliance
tensors of the austenite and martensite phases, respectively. The relation between the transformation strain
tensor & and the martensitic volume fraction ¢ is expressed by

& = A€, (A.3)

where A, is the transformation tensor which determines the transformation strain direction. 4;; is assumed
to have the following form:

SHOL ¢S
A,‘j = 2 .rj, é (A4)
Hi, &<0

where H is the maximum uniaxial transformation strain, & is the transformation strain at the reversal of
the transformation and

—m 3 M m m 1 m ol—r 2 —r
g = \/;”O'l;/,lL ol =0y — gakkéijv &= \/g“gfj I (A.5)

The thermodynamic force conjugate to ¢ is given by

0
n = 0} Ay + 305 AS 0y 4 pAseT — 6_]; — pAuy (A.6)

where f(¢) is the hardening function, the terms with the prefix 4 indicate the difference of a quantity
between the martensitic and austenitic phases and are given by

M A _ M __ A M A
ASijy = Siet — Sijks Asg =55 — 55, Aug=uy —uy, (A7)

where sy and u, are specific entropy and internal energy at the reference state.
The transformation function @ is defined in terms of the thermodynamic force 7 as

—Y, &>0
o [n-1, & A.
{—n—Y*, £<0 (A-8)

where Y* is the measure of internal dissipation due to the phase transformation. Constraints on the evo-
lution of the martensitic volume fraction are expressed in terms the Kuhn-Tucker conditions as

>0, ®(",T,8)<0, E=0,
¢ (07, T,¢) ¢ (A.9)
¢<0, &0}, T,8)<0, &C=0.
Finally, the hardening function f(£) is given by
: LobME + (u +w)é, £>0
=3P e S (A10)
3P+ —m)é, <<0

where pbM, pb*, u, and p, are transformation strain hardening constants. The material parameters for the
above described model are summarized in Table 2.
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